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Kinks and solitons in SUSY models 
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Zaragoza, Spain 

Received 29 August 1989 

Abstract. We consider arbitrary two-dimensional supersymmetric theories including kinks 
or  solitons solutions. Going to sine-Gordon and (Ab4),+, theories, we compute the first 
quantum correction to the classical mass using a technique which only needs the discrete 
levels of Schrodinger equations. Attention is devoted to scattering and statistics properties 
of soliton solutions of the SUSY sine-Gordon equation. 

1. Introduction 

Non-perturbative techniques have been used widely in quantum field theories over the 
last few years. In particular, solitary-wave solutions of nonlinear field equations 
indicate the existence of topological quantum sectors in the global theory [ 13. In fact, 
such classical solutions appear to be related to a new particle of the model, normally 
called the ‘baryon’, which in the weak-coupling regime always exhibits a large mass 
in comparison with the mesons constructed out of the homogeneous vacuum. Restrict- 
ing ourselves to bidimensional models, we can consider the so-called kink solutions 
as well as the more restrictive family of solitons. 

Simultaneously enormous progress has been achieved in a disconnected realm of 
QFT. We allude to supersymmetric theories with a new kind of symmetry which unifies 
bosonic and fermionic quanta [2]. In order to analyse the spontaneous breakdown of 
SUSY, we can consider the simplest possible model, namely that of a chiral field 
associated with the N = 1 general case, in 1 + 1 dimensions [3]. Using the powerful 
superfield formalism, we formulate a general SUSY invariant action where a clever 
choice for the so-called superpotential function allows us to consider systems including 
kinks or solitons as classical solutions. In particular the sine-Gordon and 
models are easily recovered once the adequate choice of superpotential function is 
made. 

Now we recall one of the most exciting properties of supersymmetric field theories, 
namely that the invariance of the vacuum under SUSY transformations appears con- 
nected to the vanishing of the vacuum energies. It is known that the vacuum diagrams 
are cancelled among bosonic and fermionic loops to all orders around the classical 
vacuum [4]. Working over the background provided by the inhomogeneous classical 
solutions of bidimensional models, the non-vanishing of the quantum correction to 
the classical mass is traced to the existence of supersymmetric violating boundary 
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terms in the Lagrangian. In fact, the S U S Y  content of the model reduces to the N = 
case instead of the initial N = 1 situation [ 5 ] .  

Many authors have computed the one-loop correction to the classical mass of kinks 
or  solitons under the restriction to a finite box of length L by obtaining the eigenvalue 
spectrum and then, once the sum of these eigenvalues is performed, allowing the 
dimension of the box to tend to infinity [6]. However, simple expressions can be found 
for bosonic corrections in some particular cases (we will discuss the two required 
conditions). The above-mentioned method incorporates the renormalisation counter- 
terms, a normal ordering prescription being scalar bidimensional models, and curiously 
only uses the discrete levels of the stability equation ( a  conventional Schrodinger 
operator [7]). In this paper we extend this bosonic technique to the first fermionic 
correction to the classical mass. The point is the relation between bosonic and fermionic 
density of states per wavenumber. The unified treatment is then applied to the kink 
solution of ( A c $ ~ ) , + ,  theory and the soliton solution of the sine-Gordon model. 

In particular the sine-Gordon system exhibits interesting properties. One of the 
most notorious is the equivalence to the massive Thirring model [8], a surprising fact 
because the latter is expressed in terms of fermionic fields only. Even more surprising, 
the sine-Gordon model is equivalent to a free massive Dirac theory whenever a certain 
combination of coupling constants fulfils a special condition. Pursuing this analogy, 
the soliton represents a particle with fermion number 1 while the antisoliton adopts 
the value -1. In fact, the soliton and the antisoliton appear as the lightest particles 
in the theory with non-zero fermion number. Therefore the SG soliton is nothing other 
than the fundamental fermion of the massive Thirring model. Anyway, we see a 
fermion appearing as a coherent state of a Bose field without any conflict with the 
hypothetical spin-statistics theorem, since in one dimension there is no  spin. Using a 
semiclassical description, based on a generalisation of the well known relation between 
phase shift and  time delay in potential theory, the different collision channels for the 
sine-Gordon theory have been studied [ 9 ] .  Restricting ourselves to soliton-soliton 
scattering, we have a repulsive force with part of the interaction region excluded for 
the particles, with the result that we find a time advance due to the shorter distance 
each particle travels. Moreover, the absence of bound states reinforces the preceding 
interpretation and gives us a nice place to apply the exclusion principle, the SG soliton 
being a fermion. 

Going to a SUSY version of the SG model, we can extend the conventional analysis. 
We recall the bosonic stability equation where an  unavoidable zero-energy mode 
emerges due to translational invariance. Invoking SUSY,  this zero mode percolates into 
the fermionic part of our model. In a conventional interpretation we should consider 
a state with the zero mode occupied and a second one where that state remains 
unoccupied. Then it is shown that the fermion number is generally transferred between 
the soliton and the (anti) soliton in the scattering process. Taking the soliton-soliton 
channel in which the zero-energy fermion state is occupied for both, study of the 
S-matrix in the semiclassical approximation reveals the emergence of a bound state. 
This fact supports the interpretation of the SUSY sine-Gordon soliton as a boson on 
the understanding that the fermionic zero mode is occupied. When this state remains 
unoccupied the fermionic character of the soliton is recovered. 

The paper is arranged in the following way. Section 2 is devoted to a general 
description of SUSY models including kinks or  solitons, while the third section includes 
the first quantum corrections to the classical mass of the topological object. Then, in 
section 4, we analyse the scattering process, including arguments about the statistics 
of solitons in the SUSY SG model. Our main conclusions are finally stated in section 5 .  
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2. SUSY models including kinks or solitons 

In order to establish the general scheme we consider a model constructed out of the 
single chiral scalar superfield in 1 + 1 dimensions. The interaction terms can take a 
much more general form than in the conventional 2 +  1 or 3 + 1 cases, due to the 
renormalisability of the different models. In the following we will use the powerful 
superfield formalism [lo]. As we are interested in a SUSY N = 1 theory, the real spinorial 
anticommuting parameters correspond to 

0 1  
o) 

(577) = 5a% = EOL85p?7,. (2.3) 

@(x, e ) =  4 ( x ) + i O V ( x ) + $ ( e e ) F ( x )  (2.4) 

Now we consider the chiral scalar superfield, namely 

where 4 is a real scalar field, V is a Majorana field and F represents the so-called 
‘auxiliary field’. Passing to the superspace (x, 0 )  = (xo, x’, eo, e‘), we must introduce 
the covariant derivatives 

a 
o a  = B , + ( Y ” e ) ” a ,  oU = iEapQp (2.5) 

together with their conjugate derivatives 

(2.6) 

Defining 

P, = -id, (2.7) 

{ oa 9 o p  1 = 2( Y ”P, )ap  [ Q o ,  PSI = o  LOa, P”1 =o.  (2.8) 

{Q”, D p 1 = 0 .  (2.9) 

we recover the conventional superalgebra associated with the N = 1 case, namely 

Moreover 

As a matter of fact, the actions we are looking for represent particular cases of a 
SUSY U model [ 113. The action of the free theory is now 

[@(x, e)(DUD,)@(x, e)] d 2 x d 2 0  (2.10) 

which easily reduces to the well known form 

So= [ ( a , 4 ) ’ + ~ ( i y ” a , ) V + F 2 ]  d 2 x  (2.11) 5 

I 
Bearing in mind the special renormalisability properties of scalar bidimensional 

models, we can choose an interacting part of the action to be 

SI = W [ @ ( X ,  e) ]  d2x d’8 (2.12) 
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which, once we perform the conventional expansion, leads to 

S, = f (2FW’-  W”I”€’) d’x I (2.13) 

where W ( 4 )  is the so-called superpotential function and the prime denotes a derivative 
with respect to the argument. Combining both contributions, the total action is 

S =  i [ (a ,4) ’+q( iypa , )9+F2+2FW’-  W ” q V ]  d’x. (2.14) I 

I 

The classical Euler-Lagrange equation for the ‘auxiliary field’ F is simply 

F = - W ’  (2.15) 

and hence, on elimination of F, (2.14) becomes 

S =  f [(d,r$)’+q(iy”a,)Y- W”- W”@Y] d‘x. (2.16) 

In particular, (2.15) is concerned with the spontaneous breakdown of supersym- 
metry. That phenomenon occurs if and only if F # 0 at the potential minimum [12]. 
Once we have chosen a superpotential function W( 4)  such that the associated theory 
admits topological classical solutions, the SUSY algebra must be supplemented by the 
central charges [ 131. 

After producing a theory which exhibits topological classical solutions, we can 
perform the quantisation programme by perturbing around those solutions, always in 
a ‘weak-coupling’ approximation. In particular we are interested in the first quantum 
correction to the classical mass, using methods which normally proceed via the 
semiclassical approximation or one-loop terms. Restricting to the bosonic part, many 
authors have computed the one-loop contribution under the restriction to a finite space 
of length L; once having studied the eigenstate spectrum, one can sum the eigenstates. 
The last step allows the length of the box to be taken to infinity [6]. In some particular 
cases, including the ( A # 4 ) , + ,  theory and the sine-Gordon model, the general expression 
reduces to a simple formula which only includes the discrete levels of Schrodinger 
equations, once the renormalisation counterterms have been incorporated. The objec- 
tive pursued in this section is the extension of the above-mentioned technique to the 
fermionic contribution, thus resulting in a unified treatment particularly useful in SUSY 

models. Taking a general theory, we start by shifting the scalar field by the classical 
solution &(x),  4 ( x )  = &(x) + cp(x); these bosonic fluctuations obey the stability 
equation [5] 

whenever we consider the conventional Bogomolny condition 

-- d4c(x) - * W’(4J. 
dx 

(2.17) 

(2.18) 

Writing the spinor in its two-component form 

(2.19) 
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the Dirac equation becomes 

Q’u- = i ($+ W”(I$,) u-(x) = -oFu+(x)  ) (2.20a) 

(2.20b) 

which, making full use of the hidden SUSY quantum mechanical character of the Dirac 
equation over the background provided by I$,(X), yields 

d2 + W”(I$,)2+dW”(~C)) u+(x) = w:u+(x)  (2.21a) Q + Q ~ +  = (-2 dx 

QQ’u- = --+ d2 W”( 4,)’ - w”(’c)) u-(x) = wFU-(X) 2 (2.21 b) ( dx’ dx 

so that one of the fermionic components (depending on the sign of (2.18)) fulfils the 
bosonic fluctuation equation (2.17). Now the first quantum correction to the classical 
mass is given by 

A M = i C  ( u B - w F ) .  (2.22) 

In order to write a more rigorous version of (2.22) we need the bosonic (fermionic) 
densities of states n, ( n F )  in the continuous part of the spectrum. Let us also define 
n ,  ( n - )  to be the densities of states of the operators Q’Q (99’). Depending on the 
sign of (2.18), we have 

n B =  n ,  or n B =  n-  (2.23) 

while 
1 n F =  T ( n + + n - ) .  (2.24) 

This relation between n F  and n ,  requires a further analysis [5]. As n F  is the density 
associated with the fermionic operator 

F = [ i  y ]  
it represents half the density of 

Q’Q 0 ‘.=[ 0 QQ+]*  

To prove this fact we consider the operator 

P = [ ’  0 -1  o] 

(2.25) 

(2.26) 

(2.27) 

which anticommutes with F, while it commutes with F2.  For each eigenvalue E’ of 
F2 we can find two eigenstates In) and Pin), only one of which is a positive-frequency 
eigenstate of F with eigenvalue E. If we bear in mind the densities of the operators 
Q’Q (QQ’), equation (2.24) is recovered. The final conclusion of the preceding 
argument reduces to 

(2.28) n B -  nF = *i (n+ - n - )  
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so that the first quantum correction to the classical mass is 

A M = + - d t  (- dn, - %) ( t’ + w” ( do) ?) 2ir d t  
(2.29) 

where W”( 40) corresponds to the mass of the homogeneous vacuum do. Invoking the 
supersymmetry properties of the model, the discrete eigenvalue contribution cancels. 
In fact, the non-zero character of AM is due to the different density of states n, ( n - )  
in the continuous part of the spectrum. Restricting ourselves to the cases where the 
potentials U ( x )  which appear in (2.21) obey two conditions, namely that the proper 
U ( x )  be ‘reflectionless’ and  that (1 + 1x1) U ( x )  be integrable, AM reduces to a very 
simple form that only involves the discrete spectrum [7]. In order not to clutter the 
paper, we omit any discussion of the method and  its peculiarities. Anyway, a detailed 
exposition can be found in [ 141. We simply point out the final result concerning (2.29). 
If we split the AM general contribution in the form 

(2.30) AM = *(AM+ - AM-) 

the partial contributions can be calculated using [7] 

C (sin e,, - e,1 COS e,l) j = + , -  
W“(d0) AM, = -~ 

2ir I 

(2.31) 

where the sum extends over the discrete levels of (2.21) below the starting point of 
the continuous spectrum W (  do), do being the homogeneous vacuum. Moreover, the 
e,, are given by 

(2.32) 

Returning to (2.21), we recognise the typical supersymmetric quantum mechanics 
exercise where the superpotential corresponds to W”( 4c). In particular we recall the 
duplication of non-zero eigenvalues in (2.21) while the zero-energy mode can appear 
as a singlet. According to the sign of the Bogomolny condition (2.18), the bosonic 
equation (2.17) coincides either with ( 2 . 2 1 ~ )  or with (2.21b). If we bear in mind the 
mandatory zero-energy mode of (2.17) due to translational invariance [6], it happens 
that our SUSYQM problem exhibits a zero mode. In these conditions (2.30) reduces to 
the zero-energy contribution, namely 

(2.33) 

3. Two examples: (A44),+, and sine-Gordon 

Now we concentrate on the most typical models exhibiting kinks or solitons. In  
particular we consider the SUSY versions of the  AI$^)^+^ and sine-Gordon theories. 

3.1. The (A44)f+f theory 

It suffices to take 
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a choice which leads to the action 

Looking for the potential minima, we can label the classical vacua as 

m m ( 4 ) -  = -- fi (O)+=x. (3 .3)  

Returning to ( 2 . 1 5 ) ,  we recover the unbroken supersymmetry character of the model. 
Expanding the scalar field around the VEV (vacuum expectation value), c$(x)= 
* m / f i +  cp, we recover the mass degeneracy 

m: = m$ = 2m2.  (3 .4 )  

Moreover, the kink solution adopts the form [ 6 ]  

while the solution with the minus sign in front will represent the antikink. If we recall 
the classical energy density of the kink 

we can calculate the classical mass associated with the extended object 

(3 .6)  

(3 .7 )  

Returning to the results obtained in section 2, the Schrodinger equation satisfied 
by the bosonic quantum fluctuations cp(x) is 

d2  
(-2 

while the couple (2.21) reduces to 

+ 3 m 2  t a n h 2 ( s )  - m 2 )  u-(x) = w:u-(x) 

( 3 . 9 a )  

(3 .96 )  

so that (3 .8)  and (3 .9b )  coincide in accordance with the Bogomolny condition for the 
kink solution of theory, namely 

(3.10) 

Therefore the zero-mode appears associated with u - ( x )  while the first quantum 
correction to the classical mass is easily computed using (2.33) 

(3.11) 
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3.2. The sine-Gordon system 

Now we are concerned with 

and therefore 

(3.12) 

(3.13) 

According to the preceding treatment, the absolute minima of the potential corre- 
spond to 

(3.14) 

a limit case with infinite vacua and Z field translational symmetry. Although a complete 
analysis of the theory constructed out of the homogeneous vacua of (3.14) would 
require considerable work, we recall the pure bosonic case where the doublet state 
represents the fundamental particle of the sector [6], we can obtain a simple picture 
by expanding the density Lagrangian in powers of the coupling constant A. We then 
get 

m 

A 
VQ qy qhp -- 42Qy + . . 

2 cos (=) 2 2m 

( 3 . 1 5 ~ )  

(3.15 b )  

thus confirming the mass degeneracy and the unbroken SUSY character of the model 
around the homogeneous vacua. To proceed to section 4 we need the soliton solution 
[6], namely 

4m 
4s(x)  =- tan-’[exp(mx)] vci 

as well as the antisoliton 

4m 
~ ( x )  = -- tan-’[exp(mx)]. vci 

(3.16) 

(3.17) 

Moreover, the classical energy associated with both topological solutions is simply 

am3 
M =-. 

A 

Going now to the bosonic fluctuations cp(x), we find 

(-2 +2m2 tanh’ mx- m 2  

(3.18) 

(3.19) 
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while the fermionic components correspond to 

+ 2 m 2  tanh’ mx - m 2 )  u+(x) = wgu,(x) (3 .20a)  

The coincidence between (3.19) and (3 .20a)  is 
the Bogomolny condition 

with the following first quantum correction to the 

m 
2 7  

AM = --. 

In this way the non-vanishing contribution to 

(3.206) 

easily understood bearing in mind 

(3.21) 

classical mass: 

(3.22) 

the energy can be computed via a 
unified treatment which only considers the zero-mode terms. If we recall the pure 
bosonic case, where the quantum correction is calculated by a sum over the discrete 
spectrum, the fundamental point is that the SUSY character of the models simplifies 
the formula obtained in [7]. 

4. Scattering and statistics of solitons in SUSY sine-Gordon theory 

As early as the 1960s Skyrme [15]  suggested that the sine-Gordon soliton, despite of 
arising from a bosonic field theory, may be equivalent to fermions which interact 
through a four-fermion term. More recently Coleman [8] established such an 
equivalence within the framework of perturbation theory. In fact the sine-Gordon 
system turns out to be equivalent to the massive Thirring model (if a certain combination 
of coupling constants fulfils a special condition, SG corresponds with a free massive 
Dirac theory). Thus the soliton is a particle of fermion number 1 while the antisoliton 
represents the particle of fermion number - 1 .  Moreover, the soliton and the antisoliton 
appear as the lightest particles in the theory with non-zero fermion number. Therefore 
a fermion emerges as a coherent state of a Bose field, a result which could not happen 
in three space dimensions, for example, due to the spin-statistics theorem. However, 
we cannot apply the spin-statistics theorem in one dimension since then there is no spin. 

In order to discuss statistical properties the scattering process provides valuable 
information. Following a semiclassical approximation, based on the relation between 
phase shift and time delay in simple potential theory, the description of soliton scattering 
is available. On the other hand, when the time delay in a collision process is known, 
the sine-Gordon model constitutes an excellent example, the phase shifts and hence 
the S-matrix elements can be determined easily. To sum up, we can write the equation 
for the semiclassical phase shift [ 9 ]  

S ( E ) = - + -  A t ( E ’ )  dE‘  
n;7 ; f, (4.1) 

where A f  represents the classical time delay in the collision while nB points out the 
number of bound states below the threshold energy Eth. Restricting the analysis to 
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the pure sine-Gordon model, where the time delay for soliton-antisoliton and soliton- 
soliton scattering is well known [6], the phase shifts are [9] 

s , j ( U )  = - 
A 

16m' 1: ll!;2 dx 
6 , , ( U )  =- - 

A 

(4.20) 

(4.2b) 

on the understanding that n = 8.rrm2/A is the maximum number of soliton-antisoliton 
bound states. In particular, this soliton-antisoliton channel scattering admits a simple 
physical interpretation. If we recall the asymptotic form of the classical solution, the 
Af < 0 value, namely [9] 

2 1 
Y=- d C - 7  

A t ( u ) = - I n  U 
muY 

(4.3) 

(where U is the asymptotic velocity of each particle) indicates attractive forces, a 
physical picture in accordance with the emergence in this soliton-antisoliton channel 
of a certain number of bound solutions. On the other hand, the soliton-soliton 
scattering requires a careful analysis. The asymptotic behaviour of the classical solution 
admits a double physical interpretation. In principle one might accept a picture very 
similar to the one pointed out for the soliton-antisoliton channel with total transmission 
and negative time delay (see (4.3)). This possibility can be rejected at once because 
it would mean the presence of attractive forces in a channel where the bound states 
are absent. However, (4.26) admits a different interpretation in terms of a total reflection 
phenomenon with the time delay which appears in (4.3). More precisely, if the forces 
are repulsive and therefore a part of the interaction region is excluded from the particles, 
the time advance is a logical result due to the shorter distance each particle travels. 
In this case the absence of bound states needs no additional comment. Anyway this 
picture of backward soliton-soliton scattering provides a natural place for the semi- 
classical version of the Pauli exclusion principle, thus confirming the common know- 
ledge that the soliton solution of SG theory represents a fermion. 

Now we want to extend the preceding scheme to the supersymmetric version of 
the model. If know the S-matrix for soliton scattering in the semiclassical approxima- 
tion, including the contribution provided by the fermion zero mode and its transference 
process, a more complete analysis of the statistics properties is at hand. Restricting 
ourselves for the moment to studying the case of the (anti) soliton only, we find a 
fermion zero-energy mode as the following: 

(4.4) 

where C represents a finite normalisation constant. Now the fermion field operator 
may be expanded as 

q (x ,  t )  = E  [bkuk(x) exp(-iwkt)+ b:ut(x) exp(iwkt)] (4.5) 
k 

where Uk(x) is the conventional spinor while the operators bk (b:) satisfy anticommuta- 
tion relations 

{bk, b;,}= 8 k k . .  (4.6) 
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In particular the fermion number can be computed using the operator 

Since the operator bo is associated with the fermion zero mode, it happens that 
operating on the ground state with b; produces another state with identical energy. 
As we cannot distinguish occupied and unoccupied states by energy for the fermion 
zero mode, there are two degenerate states which have fermion number different by a 
unit. Working on the soliton (antisoliton), the two above-mentioned states will satisfy 

bo/-; s ( S ) ) = O  bll-; s(S) )= /+ ;  s(S)) (4.8) 

so that, following the conventional interpretation, the 'plus' state will be called occupied 
and the 'minus' state unoccupied. We can conclude that over the background provided 
by the soliton (antisoliton) the fermion presence leads to a doubly degenerate lowest- 
energy state. 

Now we can pass to the transfer of fermion number in the scattering process. 
Starting from the explicit soliton-antisoliton and soliton-soliton solutions, the general 
Dirac equation can be analytically solved whenever the constants of the model fulfil 
a certain condition [16]. (In fact this special condition reduces the general system to 
our supersymmetric case.) Using the typical 'in' ('out') states, the complete analysis 
of the scattering processes is available. While a detailed exposition of this subject can 
be found in [16], we point out simply the results we need to discuss the statistical 
properties. To sum up, the S-matrix for soliton-antisoliton scattering, including the 
fermion zero-mode contribution, is given by (see section 3 of [ 161) 

where p i  (pf) represent the asymptotic momenta of the particles while the factor 
exp(2iSSs) includes the bosonic contribution presented in ( 4 . 2 ~ ) .  We can deal with 
soliton-soliton scattering in a similar manner to that outlined for a soliton-antisoliton 
collision. In fact 

}. (4.10) 
in(%; - - 1 - -; ss)o"t = 1 

i n & ;  + + I + +; ss),,t = - 1 
s,, = ( 2 ~ ) ~ 6 " ' ( p ,  -pf) exp(2isS,) 

With these data to hand we can discuss the effect of the fermion presence on the 
scattering of solitons. Whenever the zero mode remains unoccupied, see (4. lo), the 
physical picture already considered maintains its validity, i.e. the soliton exhibits a 
fermionic character consistent with the scattering results. However, the situation is 
disturbed when considering solitons with occupied fermion zero modes. Unlike the 
former case, a smart 'minus' sign emerges in (4.10). Incorporating this contribution 
into the exponential factor, we find a modified phase shift, namely 

7r 16m2 l n x  
2 A 1 -x2dx* s; , (u )= -+ -  - (4.1 1) 

If we bear in mind the general formula (4.1) the soliton-soliton scattering, with 
occupied fermion zero modes, includes a time advance (see (4.3)) which indicates 
attractive forces. Moreover, this fact is consistent with the existence of a bound state 
in the channel. The former arguments support the interpretation of the SUSY sine- 
Gordon soliton as a boson on the understanding that the fermionic zero mode is 
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occupied. When this state remains unoccupied the fermionic character of the soliton 
is recovered. 

5. Conclusions 

Using the powerful superfield formalism, we have considered arbitrary two-dimensional 
supersymmetric theories. Simple choices for the superpotential function allow us to 
recover the most well known cases: (A44)1+1 and sine-Gordon. As a matter of fact, 
we can compute the first quantum correction to the classical mass by means of a simple 
technique which only uses the discrete levels of Schrodinger equations. Invoking SUSY, 
cancellation occurs for non-zero eigenvalues with a final term associated with zero- 
energy modes. Attention is also devoted to scattering and statistical properties of 
solitons in SUSY sine-Gordon. In particular, we complete the qualitative arguments 
which in pure sine-Gordon theory identify the soliton as a fermionic particle. 
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